Center for Veterinary Biologics and

National Veterinary Services Laboratories Testing Protocol

Supplemental Assay Method for the Titration of Neutralizing Antibody against Selected Bovine Viruses (Constant Serum-Varying Virus Method)

Date:		August 7, 2000								
Supersedes	::	June 14, 1971								
Number:		MVSAM0107.01								
Standard R	equirement:	9 CFR, Part 113.200								
Contact Pe	erson:	Peg A. Patterson, (515) 663-7334 Larry R. Ludemann, (515) 663-7264								
Approvals:		Date:								
	Linn A. Wilbur Mammalian Viro	r, Head/Team Leader clogy Section Date:								
	Ann L. Weigers, Quality Assurance Manager									
		Date:								
	Randall L. Levings, Director Center for Veterinary Biologics-Laboratory									
	United Stat	tes Department of Agriculture								

Animal and Plant Health Inspection Service
P. O. Box 844
Ames, IA 50010

Mention of trademark or proprietary product does not constitute a guarantee or warranty of the product by USDA and does not imply its approval to the exclusion of other products that may be suitable.

Table of Contents

- 1. Introduction
 - 1.1 Background
 - 1.2 Key Words
- 2. Materials
 - 2.1 Equipment/instrumentation
 - 2.2 Reagents/supplies
- 3. Preparation for the test
 - 3.1 Personnel qualifications/training
 - 3.2 Preparation of equipment/instrumentation
 - 3.3 Preparation of reagents/control procedures
 - 3.4 Preparation of the Test Serum Samples
- 4. Performance of the test
- 5. Interpretation of the test results
- 6. Report of test results
- 7. References
- 8. Summary of revisions

CVB/NVSL MVSAM0107.01
Testing Protocol Page 3 of 13

Supplemental Assay Method for the Titration of Neutralizing Antibody against Selected Bovine Viruses (Constant Serum-Varying Virus Method)

1. Introduction

1.1 Background

This Supplemental Assay Method (SAM) describes an *in vitro* serum neutralization (SN) assay test method to determine the neutralization index (NI) against bovine rhinotracheitis virus (IBR), bovine virus diarrhea (BVD) type I and type II, parainfluenza (PI3), or bovine respiratory syncytial virus (BRSV).

1.2 Key Words

Bovine rhinotracheitis virus; IBR; bovine virus diarrhea; BVD; parainfluenza; PI3; bovine respiratory syncytial virus; BRSV; serum neutralization; SN; antibody titer; in vitro

2. Materials

2.1 Equipment/instrumentation

- **2.1.1** Incubator, 1 36° \pm 2°C, 5% \pm 1% CO₂, high humidity
- 2.1.2 Vortex mixer²
- 2.1.3 Microscope, inverted light
- 2.1.4 Microscope, fluorescent
- **2.1.5** Micropipettor, 200 μ l, 1000 μ l single channel, 5 5-50 μ l x 12 channel, 6 and tips 7

¹ Model 3158, Forma Scientific, Inc., Box 649, Marietta, OH 45750-0649 or equivalent

² Vortex-2 Genie, Model G-560, Scientific Industries, Inc., 70 Orville Dr., Bohemia, NY 11716 or equivalent

 $^{^{3}}$ Model CK, Olympus America, Inc., 2 Corporate Center Dr., Melville, NY 11747 or equivalent

⁴ Model BH2, Olympus America, Inc. or equivalent

⁵ Pipetman[®], Rainin Instrument Co., Mack Rd., Box 4026, Woburn, MA 01888 or equivalent

⁶ Finnpipettes[®], Cat. No. NX204662D, A. Daigger Company, Inc., 199 Carpenter Ave., Wheeling, IL 60090 or equivalent

⁷ Cat. No. YE-3R, Analytic Lab Accessories, P.O. Box 345, Rockville Center, NY 11571 or equivalent

- 2.1.6 Water bath8
- 2.1.7 Centrifuge9 and rotor10

2.2 Reagents/supplies

- 2.2.1 Indictor Virus¹¹
 - **1.** IBR
 - 2. BVD type I
 - 3. BVD type II
 - **4.** PI3
 - 5. BRSV

2.2.2 Cell Cultures:

- 1. Madin-Darby bovine kidney (MDBK) cells 12 used for IBR and PI3 SN testing.
- 2. Embryonic bovine kidney (EBK) cells¹³ used for BVD type I and type II testing.
- **3.** Embryonic bovine lung (EBL) cells 13 used for BRSV testing.
- 2.2.3 Minimum essential medium (MEM)
 - **2.2.3.1** 9.61 g MEM with Earle's salts without bicarbonate¹⁴
 - **2.2.3.2** 2.2 g sodium bicarbonate $(NaHCO_3)^{15}$

⁸ Cat. No. 15-461-10, Fisher Scientific Co., 2000 Park Ln., Pittsburgh, PA 15275 or equivalent

⁹ Model J6-B, Beckman Coulter, P.O. Box 3100, Fullerton, CA 92834-3100 or equivalent

¹⁰Type JS-4.0, Beckman Coulter or equivalent

¹¹Reference quantities are available upon request from the Center for Veterinary Biologics-Laboratory (CVB-L), P.O. Box 844, Ames, IA 50010 or equivalent

¹²Cat. No. ATCC CCL-22, American Type Culture Collection, 12301 Parklawn Dr., Rockville, MD 20852-1776

¹³Available upon request from the CVB-L or equivalent

¹⁴Cat. No. 410-1500EF, Life Technologies, Inc., 8400 Helgerman Ct., Gaithersburg, MD 20884 or equivalent

 $^{^{15}}$ Cat. No. S-5761, Sigma Chemical Co., P.O. Box 14508, St. Louis, MO 63178 or equivalent

- 2.2.3.3 Dissolve Sections 2.2.3.1 and 2.2.3.2 with 900 ml deionized water (DW).
- **2.2.3.4** Add 5 g lactalbumin hydrolysate or edamine 16 to 10 ml DW. Heat to 60° \pm 2°C until dissolved. Add to **Section 2.2.3.3** with constant stirring.
- **2.2.3.5** Q.S. to 1000 ml with DW; adjust pH to 6.8-6.9 with 2N hydrochloric acid (HCl).¹⁷
- 2.2.3.6 Sterilize through a 0.22-µm filter. 18
- 2.2.3.7 Aseptically add:
 - 1. 10 ml L-glutamine¹⁹
 - 2. 25 units/ml penicillin²⁰
 - 3. 50 μg/ml gentamicin sulfate²¹
 - 4. 100 μg/ml streptomycin²²
 - 5. 2.5 μ g/ml amphotericin B²³
- **2.2.3.8** Store at $4^{\circ} \pm 2^{\circ}$ C.
- 2.2.4 Growth Medium
 - 2.2.4.1 900 ml of MEM
 - **2.2.4.2** Aseptically add 100 ml gamma-irradiated fetal bovine serum (FBS)
 - **2.2.4.3** Store at $4^{\circ} \pm 2^{\circ}$ C.
- 2.2.5 Maintenance Media
 - 2.2.5.1 980 ml of MEM

 $^{^{16}}$ Edamine, Cat. No. 59102, Sheffield Products, P.O. Box 630, Norwick, NY 13815 or equivalent

¹⁷Cat. No. 9535-01, J.T. Baker, Inc., 222 Red School Ln., Phillipsburg, NJ 08865 or equivalent

¹⁸Cat. No. 12122, Gelman Sciences, 600 S. Wagner Rd., Ann Arbor, MI 48106 or equivalent

 $^{^{19}}$ L-glutamine-200 mm (100X), liquid, Cat. No. 320-503PE, Life Technologies, Inc. or equivalent 20 Cat. No. 0049-0530-28, Schering Laboratories, 2000-T Galloping Hill Rd., Kenilworth, NJ 07033 or equivalent

²¹Cat. No. 0061-0464-04, Schering Laboratories or equivalent

 $^{^{\}rm 22}{\rm Cat.}$ No. S-9137, Sigma Chemical Co. or equivalent

 $^{^{23}}$ Cat. No. A-4888, Sigma Chemical Co. or equivalent

- **2.2.5.2** Aseptically add 20 ml gamma-irradiated FBS.
- **2.2.5.3** Store at $4^{\circ} \pm 2^{\circ}$ C.
- 2.2.6 Monoclonal antibodies (MAb) 13
 - 1. Anti-BVD type I MAb
 - 2. Anti-BVD type II MAb
- **2.2.7** Anti-mouse fluorescein isothiocyanate labeled conjugate (Anti-Mouse Conjugate)¹³
- 2.2.8 80% Acetone
 - 2.2.8.1 80 ml acetone²⁴
 - 2.2.8.2 20 ml DW
 - **2.2.8.3** Store at room temperature (RT) $(23^{\circ} \pm 2^{\circ}C)$.
- 2.2.9 0.01 M Phosphate buffered saline (PBS)
 - **2.2.9.1** 1.33 g sodium phosphate, dibasic, anhydrous $(Na_2HPO_4)^{25}$
 - **2.2.9.2** 0.22 g sodium phosphate, monobasic, monohydrate $(NaH_2PO_4 \cdot H_2O)^{26}$
 - **2.2.9.3** 8.5 g sodium chloride (NaCl)²⁷
 - 2.2.9.4 O.S. to 1000 ml with DW.
 - **2.2.9.5** Adjust pH to 7.2-7.6 with 0.1 N sodium hydroxide (NaOH)²⁸ or 2N HCl.

 $^{^{24}\,\}mathrm{Cat.}$ No. A 6015, Sigma Chemical Co. or equivalent

 $^{^{\}rm 25}\,{\rm Cat.}$ No. S 0876, Sigma Chemical Co. or equivalent

²⁶Cat. No. S 9638, Sigma Chemical Co. or equivalent

 $^{^{27}\}mathrm{Cat.}$ No. S 9625, Sigma Chemical Co. or equivalent $^{28}\mathrm{Cat.}$ No. 925-30, Sigma Chemical Co. or equivalent

- 2.2.9.6 Sterilize by autoclaving at 15 psi, $121^{\circ} \pm 2^{\circ}C$ for 35 ± 5 min.
- **2.2.9.7** Store at $4^{\circ} \pm 2^{\circ}$ C.
- 2.2.10 FBS negative for IBR, BVD, PI3, and BRSV antibodies
- 2.2.11 Cell culture plate, 29 96 well
- **2.2.12** Polystyrene tube, 30 17 x 100 mm
- 2.2.13 Serological pipette, 31 10 ml
- 2.2.14 Plastic wash bottle, 32 500 ml

3. Preparation for the test

3.1 Personnel qualifications/training

Personnel must have training in antibody titration assays, cell culture maintenance, and in the principles of aseptic techniques.

3.2 Preparation of equipment/instrumentation

- 3.2.1 On day of test initiation, set a water bath at 36° ± 2°C.
- 3.2.2 On day of test initiation, set a water bath at 56° ± 2°C.

 $^{^{29}}$ Costar $^{\odot}$ 3596, Costar Corp., 1 Alewife Center, Cambridge, MA 02140 or equivalent

³⁰ Falcon® 2057, Becton Dickinson Labware or equivalent
31 Falcon® 7530, Becton Dickinson Labware or equivalent

³²Cat. No. 2402, Nalge Nunc Int., 75 Panorama Creek Dr., Rochester, NY 14602 or equivalent

3.3 Preparation of reagents/control procedures

- **3.3.1.** Two days prior to test initiation, seed 96-well cell culture plates with MDBK cells, in Growth Medium, at a cell count that will produce a confluent monolayer after 2 days of incubation at $36^{\circ} \pm 2^{\circ}$ C in a CO_2 incubator. These become the MDBK Test Plates.
- **3.3.2** One day prior to test initiation, seed 96-well cell culture plates with EBK cells, in Growth Medium, at a cell count that will produce a confluent monolayer after a day of incubation at $36^{\circ} \pm 2^{\circ}$ C in a CO_2 incubator. These become the EBK Test Plates.
- 3.3.3 On the day of the test initiation, seed 96-well cell culture plates with EBL cells, in Growth Medium. These become the EBL Test Plates.
- **3.3.4** On day of test initiation, rapidly thaw a vial of an appropriate Indicator Virus in a $36^{\circ} \pm 2^{\circ}$ C water bath. The number of dilutions depends upon the predetermined titer of the Indicator Virus. Prepare serial tenfold dilutions as follows:
 - **3.3.4.1** Pipette 9.0 ml of MEM with a serological pipette into 8, 17 x 100-mm polystyrene tubes labeled 10^{-1} to 10^{-8} .
 - **3.3.4.2** Transfer 1.0 ml of an Indicator Virus to the 10^{-1} tube; mix by vortexing. Discard the pipette.
 - **3.3.4.3** Transfer 1.0 ml from the 10^{-1} tube to the 10^{-2} tube; mix by vortexing. Discard the pipette.
 - **3.3.4.4** Repeat **Section 3.3.4.3** for each of the subsequent dilutions, transferring 1.0 ml from the previous dilution to the next dilution.

CVB/NVSL MVSAM0107.01
Testing Protocol Page 9 of 13

Supplemental Assay Method for the Titration of Neutralizing Antibody against Selected Bovine Viruses (Constant Serum-Varying Virus Method)

3.3.5 On the day of EBK Test Plate examination, dilute Anti-BVD MAb and Anti-Mouse Conjugate in PBS according to the supplied CVB-L Reference and Reagent data sheet.

3.4 Preparation of the Test Serum Samples

On day of test initiation, heat inactivate all Test Sera in a $56^{\circ} \pm 2^{\circ}$ C water bath for 30 ± 5 min.

4. Performance of the test

- **4.1** Add 150 μ l/well of an undiluted Test Serum into a column of a 96-well cell culture plate, which becomes the Dilution Plate (**Appendix I**).
- **4.2.** Add 150 μ l/well of FBS into a column of a Dilution Plate.
- **4.3** Add 150 μ l/well of the last 4 dilutions of the Indicator Virus to a row of the Dilution Plate.
- **4.4** Mix by tapping the edge of the Dilution Plate with fingers. Incubate for 60 ± 10 min at RT to allow for neutralization of the Indicator Virus.
- 4.5 At the end of the incubation period, decant Growth Medium from the MDBK Test Plates. Note: The Growth Media is not removed from the EBK and EBL Test Plates.
- 4.6 Inoculate 50 µl/well of each Virus-serum mixture into 5 wells/dilution of the appropriate Test Plate (Appendix II). Note: MDBK Test Plates are used to determine the SN titer against IBR and PI3. EBK Test Plates are used for BVD. EBL Test Plates are used for BVD.
- **4.7** Maintain 5 or more wells on each Test Plate as uninoculated cell controls.
- **4.8** Inoculate 25 μ l/well of the last 4 dilutions of the appropriate Indicator Virus to 5 wells/dilution as an endpoint titration.

CVB/NVSL MVSAM0107.01
Testing Protocol Page 10 of 13

Supplemental Assay Method for the Titration of Neutralizing Antibody against Selected Bovine Viruses (Constant Serum-Varying Virus Method)

- **4.9** Incubate MDBK Test Plates for 60 \pm 10 min at 360 \pm 2°C in a CO₂ incubator.
- 4.10 Add 200 µl/well of Maintenance Medium to all wells (do not remove virus-serum inoculum) of the MDBK Test Plate.
- **4.11** Incubate the MDBK and EBK Test Plates for 96 \pm 12 hr postinoculation (HPI) at 36° \pm 2°C in a CO₂ incubator.
- **4.12** Incubate the EBL Test Plate for 144 ± 12 HPI at $36^{\circ} \pm 2^{\circ}$ C in a CO₂ incubator.
- **4.13** At the end of the incubation period, examine the wells with an inverted light microscope. Record the number of wells/dilution showing any characteristic CPE for IBR, PI3, or BRSV for each Test Sera and for the FBS.
- **4.14** An indirect fluorescent antibody technique (IFA) is conducted to determine the SN titer against BVD as follows:
 - 4.14.1 Decant media from the EBK Test Plates.
 - 4.14.2 Fill wells with 80% Acetone.
 - **4.14.3** Incubate at RT for 15 ± 5 min.
 - **4.14.4** Decant the 80% Acetone from the EBK Test Plate; air dry at RT.
 - **4.14.5** Pipette 35 μ l/well of a diluted Anti-BVD MAb into a EBK Test Plate; incubate for 45 ± 15 min at RT.
 - **4.14.6** Rinse by filling the wells completely with PBS; decant the liquid.
 - 4.14.7 Repeat Section 4.14.6 for a total of 2 washes.
 - **4.14.8** Pipette 35 μ l/well of the diluted Anti-mouse Conjugate into the EBK Test Plates; incubate for 45 ± 15 min at RT.

- 4.14.9 Repeat Section 4.14.6 for a total of 2 washes.
- **4.14.10** Dip the plate in DW, decant; allow to air dry or dry at $36^{\circ} \pm 2^{\circ}$ C.
- 4.14.11 Examine wells with a fluorescent microscope.
- **4.14.12** A well is considered positive if typical cytoplasmic, apple-green fluorescence is observed.
- **4.14.13** Record the number of wells/dilution showing any characteristic fluorescence for each Test Sera and the FBS.
- **4.15** Calculate the $TCID_{50}$ of the Test Sera and the FBS using the Spearman-Kärber method as commonly modified.
- **4.16** The NI is determined by subtracting the log of the titer obtained with the Test serum from the titer obtained with the FBS.

Example: Log $TCID_{50}$ titer with FBS 6.0 Log $TCID_{50}$ titer with Test Serum $\frac{-2.7}{NI}$ = 3.3

5. Interpretation of the test results

- 5.1 For a valid test:
 - **5.1.1** No visible contamination or serum toxicity should be observed in ≥ 1 well/dilution of **all** dilutions of a Test Sera or the FBS.
 - **5.1.2** The titer of the FBS should be negative for neutralizing antibody against IBR, BVD, PI3, or BRSV.
 - **5.1.3** The endpoint titration of the Indicator Virus should fall within 2 standard deviations of its mean titer as determined by a minimum of 10 previous titrations.

CVB/NVSL MVSAM0107.01
Testing Protocol Page 12 of 13

Supplemental Assay Method for the Titration of Neutralizing Antibody against Selected Bovine Viruses (Constant Serum-Varying Virus Method)

6. Report of test results

Record the NI for the Test Serum on the test record.

7. References

- 7.1 Code of Federal Regulations, Title 9, Parts 113.215 and 113.216, U.S. Government Printing Office, Washington, DC, 2000.
- **7.2** Finney DJ. Statistical Method in Biological Assay. 3rd ed. 1978. Charles Griffin and Co., London.
- 7.3 Rose NR, H Friedman, JL Fahey, eds. Manual of Clinical Laboratory Immunology. Chapter 11: Neutralization Assays. 1986. ASM, Washington, D.C.

8. Summary of revisions

This document was rewritten to meet the current NVSL/CVB QA requirements, to clarify practices currently in use in the CVB-L, and to provide additional detail. The following is a listing of the significant changes made from the previous protocol:

- **8.1** Testing format has been changed from roller tubes and Leighton tubes to a 96-well plate format.
- **8.2** The provision for conducting a hemabsorption test for detecting antibody against PI3 has been replaced by detecting antibody by CPE.
- **8.3** The fluorescent antibody test for detecting antibody against BVD has been replaced with an IFA to allow the differentiation between type I and II BVD antibodies.

9. Appendix

9.1 Appendix I: Dilution Plate

	1	2	3	4	5	6	7	8	9	10	11	12
A IV 10⁻³→	TS1	TS2	TS3	TS4	TS5	TS6	TS7	TS8	TS9	TS10	TS11	FBS
B IV 10-4→	V	V	V	→	V	V	→	V	V	\	→	→
C IV 10 ⁻⁵ →	V	V	V	\	V	V	V	V	V	\	→	+
D IV 10⁻⁶→	V	\	Ψ	4								
E IV 10⁻³→	TS12	TS13	TS14	TS15	TS16	TS17	TS18	TS19	TS20	TS21	TS22	TS23
F IV 10-4→	V	V	V	→	V	+	→	4	+	+	\	+
G IV 10 ⁻⁵ →	V	V	V	+	V	Ψ	4	4	Ψ	V	\	4
H IV 10 ⁻⁶ →	V	→	4	→	V	V	→	V	V	→	→	→

IV = Indicator Virus dilution, TS = Test Serum, NC = FBS

9.2 Appendix II: Test Plate

	1	2	3	4	5	6	7	8	9	10	11	12
A 10 ⁻³	TS1	TS1	TS1	TS1	TS1	CC	TS2	TS2	TS2	TS2	TS2	CC
B 10 ⁻⁴												
C 10 ⁻⁵												
D 10 ⁻⁶												
E 10 ⁻³	TS3	TS3	TS3	TS3	TS3	СС	TS4	TS4	TS4	TS4	TS4	cc
F 10 ⁻⁴												
G 10 ⁻⁵												
Н 10 ⁻⁶												

TS= Test Serum, CC= Cell Control